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I. Introduction
CatMatch is an application build by 5 members of

Cogito NTNU. The aim of this project was to create a
Tinder for cats. The application recommends cats based
on user’s preferences: users can swipe right (like) or left
(dislike) on cats. We built from scratch a small recom-
mendation system based on similarity between content.
We thought about how to improve our recommendation
system with adding parameters to optimize.

II. Overview
There are three main types of recommendation system.

The first one is collaborative filtering, which is either
user-based or item-based. On the latter, the system
recommends items to a user B based on preferences from
users similar to B (user A’s preferences in 1a). On the
former, the system recommends items similar to previous
likes from the user.
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Fig. 1: Collaborative filtering

The second one is content-based recommendation sys-
tem. They are based on the similarity between items
to recommend them to users. Since our application
CatMatch will get more items cats than users, it is
more pertinent to look at item similarity. We choose
to implement this type. Finally, the third one is hybrid
filtering, the more advanced, which utilizes both the
two first types. The similarity between users or items
can be computed by different ways: Euclidean distance,
cosinus similarity or dot-product. They all catch different
information. The dot-product similarity takes in account
the length of embeddings, which is not the case for
cosinus similarity.

III. Our algorithm
Assume that there is no cold start problem which

means that the application counts few users having
already rated1 some cats. Let denote R ∈Mnu,nc

([0, 1]∪
1A rate is here 1 like or 0 dislike (swipe right or left).

{NaN}) and E ∈ Mnc,d(R) respectively the rating and
the embedding matrix2. R contains NaN values, those we
want to predict. The cats are represented as embeddings
which catch important features of the cat as we think of
it (physical characteristics): this was the purpose of the
other part of the CatMatch team with a convolutional
neural network.

The goal is, for each user u, to recommend new cats cn.
To do so, we want to predict the rating R(u, cn) for every
new cats cn, in order to know which cats the user might
like, and then recommend the top k results. To predict
R(u, cn), the algorithm computes similarity S between
cats rated by user c ∈ Cr(u) and the others cn ∈ Cr(u)c.
Then, for each new cat, we predict the rating R(u, cn) by
weighting the rates given by the user u with the similarity
between the new cat cn and those rated c ∈ Cr(u). Let’s
break down each important steps.

A. Similarity matrix S

Let x, y ∈ Rd be the embedding of the ith and jth

cats. We compute cosinus similarity between cats. Let
S ≜ (s(Ei, Ej))i,j) ∈ Mnc

(R). With s : Rd × Rd 7→
[−1, 1] defined as:

Si,j = s(x, y) = x · y
∥x∥∥y∥

=
∑d

i=1 xiyi∑d
i=1 x2

i

∑d
i=1 y2

i

When each embedding of each cat is normalized (noted
EN ), then S = EN ET

N . This matrix allows us to know
the similarity between a new cat and the previous ones
seen by the user. These coefficients will weight the rating.

B. Compute R̂

Once we have a similarity matrix, we can predict
the rating with the following formulas. We assume that
Cr(u) ̸= Ø.

R̂(u, cn) = 1∑
c∈Cr(u) |S(cn, c)|

∑
c∈Cr(u)

S(cn, c)R(u, c)

That way, R̂(u, cn) ∈ [0, 1]. The algorithm following
synthesizes each step3. Actually, it returns the k cats
with the highest predicted rate.

2Number of users: nu. Number of cats: nc. Number of dimensions
used to represent a cat as a vector: d (emebedding).

3With αc,u = S(cn,c)∑
Cr(u)

|S(cn,c)|
.
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Algorithm 1 R(u) algorithm
function R(u)

Cr(u)← {c | R(u, c) ̸= NaN}
for cn in Cr(u)c do

r̂(u, cn)←
∑

Cr(u) αc,uR(u, c)
return arg maxcn

{r̂(u, cn)}

We finally managed to predict ratings, by looking at
similarity between previous and new cats. But that way,
the algorithm doesn’t change over time, it learns nothing.

IV. Theoretical improvement

From now on, we would like to look at the performance
of our algorithm. One of the main ways of improvement
might be considering modification over E. As a matter of
fact, in content-based recommendation system, cat’s em-
beddings should catch most relevant information about
a cat’s rating (rather than cat’s physical attributes).
That is why we added a weight matrix W ∈ Dd(R) for
each feature (columns) in E, so d parameters. Initially,
W0 = Id. We also could add deeper transformation with
W ∈ Md(R) and its d2 parameters. We can update
embeddings, the new one are denoted Ẽ = EW .

R̂W (u, cn) = 1∑
c∈Cr

|S(cn, c)|
∑

c∈Cr

EcnWW T ET
c R(u, c)

Once the rating matrix is filled, we recommend a fixed
number of new cats k to the user. Using the user feedback
R(u, cn) ∈ {0, 1}, we can use the loss function: square
error.

L(R(u, cn), R̂W (u, cn)) = 1
2(R(u, cn)− R̂W (u, cn))2

The goal is now to minimize the risk function R by
choosing the right parameters W . The risk is defined as
the expected values, over the data set X of known data
point (R where there is no NaN), of the loss. This quantity
is approximated with the empirical risk.

R(W ) = EX

[
L(R, R̂W )

]
≈ 1
|X |

∑
(u,cn)∈X

L(R, R̂W )

To optimize the parameters wi, we use the gradient
descent on the risk function R with the learning rate
η. At each step, the parameters are updated toward the
direction of the gradient:

wj ← wj − η
∂R
∂wj

We can compute, for W = diag(w1, ..., wd) ∈ Md(R).

With αW :=
∑

c∈Cr(u)
∑d

i=1 |Ecn,iEc,i|w2
i .

∂R
∂wj

= 1
|X |

∑
(u,cn)∈X

∂L
∂wj

∂L
∂wj

= (R̂−R) ∂R̂

∂wj

∂R̂

∂wj
= ∂

∂wj

 1
αW

∑
c∈Cr(u)

d∑
i=1

Ecn,iw
2
i Ec,iR(u, c)


= wj

α2
W

(∑
c

Ecn,jEc,jR(u, c)
∑

c

∑
i

|Ecn,iEc,i|w2
i −

∑
c

∑
i

Ecn,iw
2
i Ec,iR(u, c)

∑
c

|Ecn,jEc,j |

)
V. Conclusion

Finally, it was a very nice experience with a good team
on a funny topic. Unfortunately, we only have tested the
recommendation system without parameters and weren’t
able to validate the way we processed it. There were no
time for evaluating our model with split train-test set,
even though it is very important. Furthermore, the cat’s
embeddings weren’t ready at the end of the first semester
of work.
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