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I. WHAT’S THIS ALGORITHM

A logistic regression is an algorithm of machine learning
that is used to resolve binary classification problems.
Given a dataset 9 = {x(”,y(")}fl where y¥ € (0,1}, the
algorithm should learn a function hy such that hy(x) =
Py [y=1Ix] on the training dataset and beyond. Then,
with a threshold of 0.5, we can define y¥) = Ty (x0)>0.5)-
We assume that Py, ~ B0 (07 x)), where o is the sigmoid
function. Thus, the algorithm will be able to generalize
well. To aim that purpose, some weights 8 should be
found.
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The parameters 6 of the function hg must minimize the
loss function, which measures if the target function well
classifies the data. 8* = argming %y (j, y) The loss function
chosen to be minimized is the negative log likelihood.

Lo, y)=— Y. yloghg(x)+(1-y)log(1 - hy(x))
(x,)e2

To optimize the parameters 6, we use the gradient descent
on the loss function . Hence, we define two hyperpa-
rameters : epoch N and the learning rate 7. At each step,
the parameters are updated toward the direction of the
gradient :
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II. INDUCTIVE BIAS

There are many possibilities to find the function hyg :
R — R that satisfies the training dataset. Nevertheless, the
logistic regression algorithm searches the function h in
a precise subset of R® which has a finite dimension. In
the case of this algorithm, the hypothesis space called
H =R" describes a restriction bias. The term 67 x shows
that the algorithm searches a boundary decision which
is linear between the features (xi,...,x;) of the input. In
fact, a hyper plan of R” should exist and separate the two
classes. The initials weights provided constraint the local
minimum found by minimizing the loss function Z£.

III. SOME PLOTS

Fig. 1. Plot of function hg in 3D for the dataset 1. The surface describes
the probability of belonging to the class 1.
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Fig. 2. Plot of function hg(x) =Py [y =1|x] in 3D for the dataset 2. At
z=0.5 the boundary decision is an ellipse.

IV. PREPROCESSING

For the second dataset, the features are well normalized
but the boundary decision is no longer a line hyperplan of
R?. Regarding the dataset, the boundary decision has the
shape of an ellipse a(x —x,)? + B(y — ye)*> = r. To address
the issue, we introduce some new features by doing what
is called feature engineering. Furthermore, we will also
introduce a bias in order to obtain the variable r. Thus,
we have with x4 =1 :

hg(x) =0pxp+01x1 +02x(2) +03xf +04-1

V. RESULTS

Train Dataset 1 Train Dataset 2  Test Dataset 2

0.958
0.205

0.938
0.213

0.900
0.209

Accuracy 1
Cross Entropy |

To conclude, scores remain better on the training
dataset rather than on the test dataset, but it seems that
there is no overfitting.
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I. WHAT’S THIS ALGORITHM

The K-Means algorithm is an unsupervised algorithm
which creates K clusters from a dataset @ = {x®}\'. The
centroids p of each cluster ¢ are located in order to min-
imize within-cluster variances (metric : squared Euclidean
distances) over the dataset. Here it is the distortion, which
is basically the Euclidean distance between each data x?
and their centroids p. Cluster centroids p are randomly
initialized by choosing K data points. K-Means++ initializes
cluster centroids with data points that are far from each other.
The algorithm is a loop until it converges (defined with a
fixed number of epochs).

{Vie [,N] c¢®:= alrgminjllx(i)—,ujll2
P ce—m 1 . (i)
VjelLK] Hj= card({i,cD=j}) Zi,c(”:]'x

The convergence of the algorithm and the local minimum
found depends on the initialization. That is why we compute
several initializations and keep the one with the lowest dis-
tortion d =Y; o_; lx® - u;l1%. Hopefully, the local minimum
found turns out to be the global minimum.

The main hyperparameter of K-Means is K. Plotting d =
f(K) shows that % < 0 which implies nyzlv d(K) =0. Another
way to find the right K is to locate the elbow of the function
d : where 227‘; = 0. Finally, rather than using distortion, sil-
houette s € [—1,1] can be used as metric : K* = argmax s(K).

II. INDUCTIVE BIAS

The K-means algorithm assumes that data points of a
cluster must be near of the centroid of the cluster. In the
dataset 3 for example, a circle should form a cluster but the
centroid will be in the center of the circle which doesn’t
belong to the circle. This describes exactly the notion of
convex set C (Vx,yeC,0<t<1,(1-Hx+tye (). The K-
means assumes that all clusters are convex sets, which might
be not the case. The norm used also plays a prior role (in
distortion) because centroids should be close to each data
points.

III. SOME PLOTS

Fig. 1.
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Dataset 3 in polar coordinate (r,0) after applying ¢ and normaliza-

IV. PREPROCESSING

For the second dataset, one can notice that the range of
values taken by each feature xo,x; are different. To avoid
a predominance of a feature over the others, we decide
to normalize the dataset. The easier way is the following
[0,1] 3 x — % Consequently, both features can have
the same weight on the clustering algorithm.

The third dataset is more complex: data points seems
to be symmetrical, and there are two circles. Without pre-
processing, the algorithm fails to find the right clusters
because the euclidean distance is no longer appropriate
(exemple : circles). Intuitively, the polar coordinate are more
appropriate to represent the dataset. We define the bijection
¢ R2\ {0} — RY x [0,27[ that converts cartesian coordinates
to polar ones. Then, we normalize the dataset, to obtain the
Fig. 2.

V. RESULTS

Silhouette Score 1
0.672
0.592

Distortion |
8.837
3.922

Dataset 1
Dataset 2
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