Logisitic Regression

Marijan SORIĆ

Norwegian University of Science and Technology – Machine Learning marijaso@stud.ntnu.no

I. WHAT'S THIS ALGORITHM

A logistic regression is an algorithm of machine learning that is used to resolve binary classification problems. Given a dataset $\mathcal{D} = \{x^{(i)}, y^{(i)}\}_1^N$ where $y^{(i)} \in \{0, 1\}$, the algorithm should *learn* a function h_{θ} such that $h_{\theta}(x) = \mathbb{P}_{\theta} [y = 1|x]$ on the training dataset and beyond. Then, with a threshold of 0.5, we can define $y^{(i)} = \mathbb{1}_{\{h_{\theta}(x^{(i)}) > 0.5\}}$. We assume that $\mathbb{P}_{\theta|x} \sim \mathscr{B}(\sigma(\theta^T x))$, where σ is the sigmoid function. Thus, the algorithm will be able to generalize well. To aim that purpose, some weights θ should be found.

$$\hat{y} = h_{\theta}(x) \triangleq \frac{1}{1 + e^{-\theta^T x}}$$

The parameters θ of the function h_{θ} must minimize the loss function, which measures if the target function well classifies the data. $\theta^* = \operatorname{argmin}_{\theta} \mathscr{L}_{\theta}(\hat{y}, y)$ The loss function chosen to be minimized is the negative log likelihood.

$$\mathcal{L}_{\theta}(\hat{y}, y) = -\sum_{(x, y) \in \mathcal{D}} y \log h_{\theta}(x) + (1 - y) \log (1 - h_{\theta}(x))$$

To optimize the parameters θ , we use the gradient descent on the loss function \mathscr{L} . Hence, we define two hyperparameters : epoch *N* and the learning rate η . At each step, the parameters are updated toward the direction of the gradient :

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathscr{L}$$

II. INDUCTIVE BIAS

There are many possibilities to find the function h_{θ} : $\mathbb{R} \to \mathbb{R}$ that satisfies the training dataset. Nevertheless, the logistic regression algorithm searches the function h in a precise subset of $\mathbb{R}^{\mathbb{R}}$ which has a finite dimension. In the case of this algorithm, the hypothesis space called $H \cong \mathbb{R}^n$ describes a restriction bias. The term $\theta^T x$ shows that the algorithm searches a boundary decision which is linear between the features $(x_1, ..., x_n)$ of the input. In fact, a hyper plan of \mathbb{R}^n should exist and separate the two classes. The initials weights provided constraint the local minimum found by minimizing the loss function \mathcal{L} .

III. SOME PLOTS

Fig. 1. Plot of function h_{θ} in 3D for the dataset 1. The surface describes the probability of belonging to the class 1.

Fig. 2. Plot of function $h_{\theta}(x) = \mathbb{P}_{\theta}[y=1|x]$ in 3D for the dataset 2. At z = 0.5 the boundary decision is an ellipse.

IV. PREPROCESSING

For the second dataset, the features are well normalized but the boundary decision is no longer a line *hyperplan of* \mathbb{R}^2 . Regarding the dataset, the boundary decision has the shape of an ellipse $\alpha(x - x_e)^2 + \beta(y - y_e)^2 = r$. To address the issue, we introduce some new features by doing what is called *feature engineering*. Furthermore, we will also introduce a *bias* in order to obtain the variable *r*. Thus, we have with $x_4 = 1$:

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_0^2 + \theta_3 x_1^2 + \theta_4 \cdot 1$$

V. RESULTS

	Train Dataset 1	Train Dataset 2	Test Dataset 2
Accuracy ↑	0.900	0.958	0.938
Cross Entropy ↓	0.209	0.205	0.213

To conclude, scores remain better on the training dataset rather than on the test dataset, but it seems that there is no overfitting.

K-Means

Marijan SORIĆ Norwegian University of Science and Technology – Machine Learning Norway, Trondheim marijaso@stud.ntnu.no

I. WHAT'S THIS ALGORITHM

The *K*-Means algorithm is an unsupervised algorithm which creates *K* clusters from a dataset $\mathcal{D} = \{x^{(i)}\}_{1}^{N}$. The centroids μ of each cluster *c* are located in order to minimize within-cluster variances (metric : squared Euclidean distances) over the dataset. Here it is the *distortion*, which is basically the Euclidean distance between each data $x^{(i)}$ and their centroids μ . Cluster centroids μ are randomly initialized by choosing *K* data points. *K*-Means++ *initializes cluster centroids with data points that are far from each other*. The algorithm is a loop until it converges (defined with a fixed number of epochs).

$$\begin{cases} \forall i \in [1, N] \quad c^{(i)} \coloneqq \operatorname{argmin}_{j} \| x^{(i)} - \mu_{j} \|^{2} \\ \forall j \in [1, K] \quad \mu_{j} \coloneqq \frac{1}{\operatorname{card}(\{i, c^{(i)} = j\})} \sum_{i, c^{(i)} = j} x^{(i)} \end{cases}$$

The convergence of the algorithm and the local minimum found depends on the initialization. That is why we compute several initializations and keep the one with the lowest distortion $d = \sum_{i,c^{(i)}=j} ||x^{(i)} - \mu_j||^2$. Hopefully, the local minimum found turns out to be the global minimum.

The main hyperparameter of *K*-Means is *K*. Plotting d = f(K) shows that $\frac{\partial d}{\partial K} < 0$ which implies $\lim_{K \to N} d(K) = 0$. Another way to find the right *K* is to locate the *elbow* of the function d: where $\frac{\partial^2 d}{\partial K^2} = 0$. Finally, rather than using distortion, silhouette $s \in [-1, 1]$ can be used as metric : $K^* = \operatorname{argmax}_K s(K)$.

II. INDUCTIVE BIAS

The *K*-means algorithm assumes that data points of a cluster must be near of the centroid of the cluster. In the dataset 3 for example, a circle should form a cluster but the centroid will be in the center of the circle which doesn't belong to the circle. This describes exactly the notion of convex set *C* ($\forall x, y \in C, 0 < t < 1, (1 - t)x + ty \in C$). The *K*-means assumes that all clusters are convex sets, which might be not the case. The norm used also plays a prior role (in distortion) because centroids should be close to each data points.

III. SOME PLOTS

Fig. 1. Clusters for the dataset 2, K = 8

Fig. 2. Dataset 3 in polar coordinate (r, θ) after applying ϕ and normalization.

IV. PREPROCESSING

For the second dataset, one can notice that the range of values taken by each feature x_0, x_1 are different. To avoid a predominance of a feature over the others, we decide to normalize the dataset. The easier way is the following $[0,1] \ni x \leftarrow \frac{x-\min x}{\max x-\min x}$. Consequently, both features can have the same weight on the clustering algorithm.

The third dataset is more complex: data points seems to be symmetrical, and there are two circles. Without preprocessing, the algorithm fails to find the right clusters because the euclidean distance is no longer appropriate (exemple : circles). Intuitively, the polar coordinate are more appropriate to represent the dataset. We define the bijection $\phi : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^*_+ \times [0, 2\pi[$ that converts cartesian coordinates to polar ones. Then, we normalize the dataset, to obtain the Fig. 2.

V. RESULTS

	Distortion ↓	Silhouette Score †
Dataset 1	8.837	0.672
Dataset 2	3.922	0.592