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I. WHAT’S THIS ALGORITHM

A logistic regression is an algorithm of machine learning
that is used to resolve binary classification problems.
Given a dataset D =

©
x

(i ), y
(i )™N

1 where y
(i ) 2 {0,1}, the

algorithm should learn a function hµ such that hµ(x) =
Pµ

£
y = 1|x

§
on the training dataset and beyond. Then,

with a threshold of 0.5, we can define y
(i ) = 1{hµ(x(i ))>0.5}.

We assume that Pµ|x ªB(æ(µT
x)), where æ is the sigmoid

function. Thus, the algorithm will be able to generalize
well. To aim that purpose, some weights µ should be
found.

ŷ = hµ(x), 1

1+e°µT x

The parameters µ of the function hµ must minimize the
loss function, which measures if the target function well
classifies the data. µ§ = argminµLµ(ŷ , y) The loss function
chosen to be minimized is the negative log likelihood.

Lµ(ŷ , y) =°
X

(x,y)2D

y loghµ(x)+
°
1° y

¢
log(1°hµ(x))

To optimize the parameters µ, we use the gradient descent
on the loss function L . Hence, we define two hyperpa-
rameters : epoch N and the learning rate ¥. At each step,
the parameters are updated toward the direction of the
gradient :

µ√ µ°¥rµL

II. INDUCTIVE BIAS

There are many possibilities to find the function hµ :
R!R that satisfies the training dataset. Nevertheless, the
logistic regression algorithm searches the function h in
a precise subset of RR which has a finite dimension. In
the case of this algorithm, the hypothesis space called
H ª= Rn describes a restriction bias. The term µT

x shows
that the algorithm searches a boundary decision which
is linear between the features (x1, ..., xn) of the input. In
fact, a hyper plan of Rn should exist and separate the two
classes. The initials weights provided constraint the local
minimum found by minimizing the loss function L .

III. SOME PLOTS

Fig. 1. Plot of function hµ in 3D for the dataset 1. The surface describes
the probability of belonging to the class 1.

Fig. 2. Plot of function hµ(x) =Pµ
£

y = 1|x
§

in 3D for the dataset 2. At
z = 0.5 the boundary decision is an ellipse.

IV. PREPROCESSING

For the second dataset, the features are well normalized
but the boundary decision is no longer a line hyperplan of

R2. Regarding the dataset, the boundary decision has the
shape of an ellipse Æ(x ° xe )2 +Ø(y ° ye )2 = r . To address
the issue, we introduce some new features by doing what
is called feature engineering. Furthermore, we will also
introduce a bias in order to obtain the variable r . Thus,
we have with x4 = 1 :

hµ(x) = µ0x0 +µ1x1 +µ2x
2
0 +µ3x

2
1 +µ4 ·1

V. RESULTS

Train Dataset 1 Train Dataset 2 Test Dataset 2
Accuracy " 0.900 0.958 0.938
Cross Entropy # 0.209 0.205 0.213

To conclude, scores remain better on the training
dataset rather than on the test dataset, but it seems that
there is no overfitting.
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I. WHAT’S THIS ALGORITHM

The K -Means algorithm is an unsupervised algorithm
which creates K clusters from a dataset D =

©
x(i )™N

1 . The
centroids µ of each cluster c are located in order to min-
imize within-cluster variances (metric : squared Euclidean
distances) over the dataset. Here it is the distortion, which
is basically the Euclidean distance between each data x(i )

and their centroids µ. Cluster centroids µ are randomly
initialized by choosing K data points. K-Means++ initializes
cluster centroids with data points that are far from each other.
The algorithm is a loop until it converges (defined with a
fixed number of epochs).

(
8i 2 Ç1, NÉ c(i ) := argmin j kx(i ) °µ j k2

8 j 2 Ç1,K É µ j := 1
card({i ,c(i )= j})

P
i ,c(i )= j x(i )

The convergence of the algorithm and the local minimum
found depends on the initialization. That is why we compute
several initializations and keep the one with the lowest dis-
tortion d =P

i ,c(i )= j kx(i )°µ j k2. Hopefully, the local minimum
found turns out to be the global minimum.

The main hyperparameter of K -Means is K . Plotting d =
f (K ) shows that @d

@K < 0 which implies lim
K!N

d(K ) = 0. Another

way to find the right K is to locate the elbow of the function
d : where @2d

@K 2 = 0. Finally, rather than using distortion, sil-
houette s 2 [°1,1] can be used as metric : K § = argmaxK s(K ).

II. INDUCTIVE BIAS

The K -means algorithm assumes that data points of a
cluster must be near of the centroid of the cluster. In the
dataset 3 for example, a circle should form a cluster but the
centroid will be in the center of the circle which doesn’t
belong to the circle. This describes exactly the notion of
convex set C (8x, y 2 C ,0 < t < 1,(1° t )x + t y 2 C ). The K -
means assumes that all clusters are convex sets, which might
be not the case. The norm used also plays a prior role (in
distortion) because centroids should be close to each data
points.

III. SOME PLOTS

Fig. 1. Clusters for the dataset 2, K = 8

Fig. 2. Dataset 3 in polar coordinate (r,µ) after applying ¡ and normaliza-
tion.

IV. PREPROCESSING

For the second dataset, one can notice that the range of
values taken by each feature x0, x1 are different. To avoid
a predominance of a feature over the others, we decide
to normalize the dataset. The easier way is the following
[0,1] 3 x √ x°min x

max x°min x . Consequently, both features can have
the same weight on the clustering algorithm.

The third dataset is more complex: data points seems
to be symmetrical, and there are two circles. Without pre-
processing, the algorithm fails to find the right clusters
because the euclidean distance is no longer appropriate
(exemple : circles). Intuitively, the polar coordinate are more
appropriate to represent the dataset. We define the bijection
¡ : R2\{0} ! R§

+£ [0,2º[ that converts cartesian coordinates
to polar ones. Then, we normalize the dataset, to obtain the
Fig. 2.

V. RESULTS

Distortion # Silhouette Score "
Dataset 1 8.837 0.672
Dataset 2 3.922 0.592
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