Cheat Sheet for "Differential Forms on Manifolds"

Marijan SORIĆ

Norwegian University of Science and Technology – MA3402 marijaso@stud.ntnu.no

I. Notations

Homeomorphism : continuous bijection with continuous inverse. Diffeomorphism : smooth homeomorphism. Let \mathcal{M} be n dimensional manifold.

II. TANGENT VECTOR

A tangent vector $X_p \in T_p \mathcal{M}$ at $p \in \mathcal{M}$ is a map defined as:

$$X_p \colon \mathcal{C}_p^{\infty}(\mathcal{M}) \longrightarrow \mathbb{R}$$

 $f \longmapsto X_p f$

$$\left\{\frac{\partial}{\partial x^i}\Big|_p\right\}_{1\leq i\leq n}$$
 is a basis for $T_p\mathcal{M}$.

A vector field $X \in T\mathcal{M}$ is a map defined as:

$$X: \mathcal{M} \longrightarrow T_p \mathcal{M}$$

$$p \longmapsto X_p$$

$$\left\{ \frac{\partial}{\partial x^i} \right\}_{1 \le i \le n}$$
 is a basis for $T\mathcal{M}$.

III. MULTILINEAR MAP

A. 1-covectors $L_1(V) - \text{Hom}(V, \mathbb{R})$

Let V be a vector space with finite dimension n, with basis $\{e_i\}_{1 \leq i \leq n}$. $f \in V^{\vee} := \overline{\operatorname{Hom}}(V, \mathbb{R})$.

$$f \colon V \longrightarrow \mathbb{R}$$

$$v \longmapsto f(v)$$

 $\left\{\alpha^i\right\}_{1\leq i\leq n}$ is a basis for $V^\vee.$ Where $\alpha^i(e_j)=\delta^i_j.$

B. k-tensors $L_k(V)$ and k-covectors $A_k(V)$

 $f \in L_k(V) := \text{Hom}(V^k, \mathbb{R})$ is a k-tensor on V.

$$f \colon V^k \longrightarrow \mathbb{R}$$
$$(v_1, ..., v_k) \longmapsto f(v_1, ..., v_k)$$

The set of alternative multilinear function $A_k(V) := \{f \in L_k(V) \mid \forall \sigma \in \mathcal{S}_k, \sigma f = \varepsilon(\sigma)f\}.$ $\{\alpha^I\}_{I \in \mathcal{I}_{k,n}} \text{ is a basis for } A_k(V). \dim(A_k(V)) = \binom{n}{k}$ Where $\alpha^I = \alpha^{i_1} \wedge \ldots \wedge \alpha^{i_k}$ with $I = (i_1, \ldots, i_k)$ a k multi-index strictly ascending.

C. Wedge product

The wedge product is defined by, with $f_i \in A_{d_i}(V)$ with $\sum_{i=1}^b d_i = D$:

$$\bigwedge_{i=1}^{n} f_i = \left(\prod_{i=1}^{n} d_i!\right)^{-1} A\left(\bigotimes_{i=1}^{n} f_i\right)$$

$$= \left(\prod_{i=1}^{n} d_{i}!\right)^{-1} \sum_{\sigma \in S_{\mathcal{D}}} \varepsilon(\sigma) \sigma\left(\bigotimes_{i=1}^{n} f_{i}\right)$$

For $f \in A_{2\mathbb{N}+1}(V)$, $f \wedge f = 0$. For 1-covectors $\alpha^i \in A_1(V)$

$$(\alpha^1 \wedge ... \wedge \alpha^k)(v_1, ..., v_k) = \det(\left[\alpha^i(v_j)\right]_{i,j})$$

Anticommutative graded algebra over $\mathbb R$ with wedge product:

$$A_*(V) = \bigoplus_{k=0}^{+\infty} A_k(V)$$

IV. DIFFERENTIAL FORM

We define $T_p^*\mathcal{M} := A_1(T_p\mathcal{M}) = \operatorname{Hom}(T_p\mathcal{M}, \mathbb{R}).$

A. 1-form $\Omega^1(\mathcal{M})$

A smooth 1-form $\omega \in \Omega^1(\mathcal{M})$ is a map defined as:

$$\omega \colon \mathcal{M} \longrightarrow T_p^* \mathcal{M}$$

$$p \longmapsto \omega_p$$

$$\left\{dx^{i}\right\}_{1\leq i\leq n}$$
 is a basis for $T_{p}^{*}\mathcal{M}=A_{1}(T_{p}\mathcal{M})$ dual to $\left\{\frac{\partial}{\partial x^{i}}\Big|_{p}\right\}_{1\leq i\leq n}$ for $T_{p}\mathcal{M}$.

A covector $\omega_p \in T_p^* \mathcal{M} := (T_p \mathcal{M})^{\vee} = A_1(T_p \mathcal{M})$ at $p \in \mathcal{M}$ is a map defined as:

$$\omega_p \colon T_p \mathcal{M} \longrightarrow \mathbb{R}$$

$$X_p \longmapsto \omega_p(X_p)$$

$$\{(dx^i)_p\}_{1\leq i\leq n}$$
 is a basis for $T_p^*\mathcal{M}$. And $\omega_p(X_p) = \left(\sum_i a_i(dx^i)_p\right) \left(\sum_j b^j \frac{\partial}{\partial x^j}\Big|_p\right) = \sum_i a_i b^i$.

Example of 1-from: $df: p \mapsto (df)_p, (df)_p: X_p \mapsto X_p f$

B. k-form $\Omega^k(\mathcal{M})$

A smooth k-form $\omega \in \Omega^k(\mathcal{M})$ (differential form of degree k) is a map defined as:

$$\omega \colon \mathcal{M} \longrightarrow A_k(T_p\mathcal{M})$$

$$p \longmapsto \omega_p$$

 $\{dx^I\}_{i\in\mathcal{I}_{k,n}}$ is a basis for $\Omega^k(\mathcal{M})$.

A k-covector $\omega_p \in A_k(T_p\mathcal{M})$ at $p \in \mathcal{M}$ is a map defined as:

$$\omega_p \colon (T_p \mathcal{M})^k \longrightarrow \mathbb{R}$$

 $(X_{1,p}, ..., X_{k,p}) \longmapsto \omega_p(X_{1,p}, ..., X_{k,p})$

$$\left\{ (dx^I)_p \right\}_{i \in \mathcal{I}_{k,n}} \text{ is a basis for } A_k(T_p \mathcal{M}). \text{ And }$$

$$\omega_p(X_{1,p},...,X_{k,p}) = \left(\sum_I a_I(dx^I)_p \right) \left(\sum_j b^j \frac{\partial}{\partial x^j} \Big|_p \right).$$

V. Differential

 $d: \Omega^*(\mathcal{M}) \to \Omega^*(\mathcal{M})$ is an antiderivative of degree 1. $d(\omega \wedge \tau) = d(\omega) \wedge \tau + (-1)^{\deg(\omega)} \omega \wedge d\tau$ and $d^2 = 0$. For a smooth function f, $(df)_p(X_p) = X_p f$.

$$df = \sum_{i} \frac{\partial f}{\partial x^{i}} dx^{i}$$

$$\omega = \sum_{I} a_{I} dx^{I}, \quad d\omega = \sum_{I} da_{I} \wedge dx^{I} = \sum_{I} \left(\sum_{i} \frac{\partial a_{I}}{\partial x^{i}} dx^{i} \right) \wedge dx^{I}$$

Let $F: \mathcal{N} \to \mathcal{M}$ be a smooth function at p. The differential at p is a linear map defined as:

$$F_{*,p} \colon T_p \mathcal{N} \longrightarrow T_{F(p)} \mathcal{M}$$

 $X_p \longmapsto F_{*,p}(X_p)$

With,

$$F_{*,p}(X_p) \colon \mathcal{C}^{\infty}_{F(p)}(\mathcal{M}) \longrightarrow \mathbb{R}$$

 $f \longmapsto F_{*,p}(X_p)f := X_p(f \circ F)$

VI. PULLBACK AND PUSHFORWARD

Let $F: \mathcal{N} \to \mathcal{M}$. Its differential at $p \in \mathcal{N}$ is $F_{*,p}: T_p \mathcal{N} \to T_{F(p)} \mathcal{M}$. The codifferential is:

$$F^*: T^*_{F(p)}\mathcal{M} \longrightarrow T^*_p\mathcal{N}$$

 $\omega_{F(p)} \longmapsto F^*(\omega_{F(p)})$

With

$$F^*(\omega_{F(p)}) \colon T_p \mathcal{N} \longrightarrow \mathbb{R}$$

 $X_p \longmapsto F^*(\omega_{F(p)})(X_p) := \omega_{F(p)}(F_{*,p}X_p)$

Pullback of a k-form:

$$F^* \colon A_k(T_{F(p)}\mathcal{M}) \longrightarrow A_k(T_p\mathcal{N})$$

 $\omega_{F(p)} \longmapsto F^*(\omega_{F(p)})$

With

$$F^*(\omega_{F(p)}) \colon (T_p \mathcal{N})^k \longrightarrow \mathbb{R}$$

$$(v_1, ..., v_k) \longmapsto F^*(\omega_{F(p)})(v_1, ..., v_k)$$

$$:= \omega_{F(p)}(F_{*,p}v_1, ..., F_{*,p}v_k)$$

For a 0-form h, we defined the pullback of h by F as: $F^*h = h \circ F$.

VII. MANIFOLD

 \mathcal{M} is a manifold of degree n if, for all $p \in \mathcal{M}$, there is a neighborhood U and a homeomorphism $\Phi: U \to \mathbb{V} \subset \mathbb{R}^n$ open set.