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Abstract

Hopfield networks are models of associative memory used for pattern recognition
and memory retrieval from partial and noisy information. This paper focuses on
the localization and visualization of attractors in Hopfield networks, examining
their location, number, and network capacity. Using 2D and 3D visualizations,
we explore the network’s energy landscape and its ability to store and retrieve
memories. The study also analyzes the network’s dynamics, update rules, and the
connection between the energy function and attractor states.

1 Introduction

Artificial neural networks can be used at the same time for data analysis, finding biological
representations, features in the data; and for modelling, by generating representation from neural
circuitry. By developing neural networks, we want to reproduce the synaptic plasticity from
the brain: the ability of synapses to strenghten or weaken over time, in response to increases
or decreases in their activity [1]. The paradigm of Hebbian Learning (1949) describes synaptic
interactions with the simple rule: ”Neurons that fire together, wire together” [2].

The Hopfield network is a simple model of associative memory1, created in 1982 [3]. This model
is able to perform association, i.e. pattern recognition cued by partial and noisy information. The
Hopfield network can store and recall those patterns. A partial cue activates part of the assembly,
which is then completed by the dynamics. Interactions between neurons follow the Hebbian’s law
of association, that depends on the patterns that we want to memorize. Thus, we are able to retrieve
dynamically those memories from a partial and noisy information.

The aim of this work is to have a better understanding of Hopfield network’s space attractor visual-
ization. Where are they? How many are they? What is the capacity of the network? We will also try
to visualize results in 2D and 3D cases.

2 Hopfield network

2.1 Single neuron model background

Neurons can be divided into three different parts: dendrite (input), soma (central processing unit)
and axon (output), that are connected by synapses. Action potentials are the neuronal signals, or

1The ability to learn and remember the relationship between unrelated items.
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electrical pulses, that occur within a small time window and can be recorded. The membrane po-
tential u(t) is defined (at every time) as the electrical charge difference between inside and outside
the cell. An input can depolarize the cell if u(t) > urest or hyperpolarize u(t) ≤ urest. Hodgkin
and Huxley discovered in 1963 that the shape of the action potential is controlled by ions in the
membrane [4]. They also proposed a single neuron model with an electronic circuit, that links the
microscopic level of ion channels to the macroscopic level of currents and action potentials. How-
ever, this model was mathematically complex because it relied on non-linear differential equations.
That is why the Leaky Integrate-and-Fire Model was introduced, a more general model [1].

2.2 Hopfield network definition

We consider a network with N neurons. Each of them can be active or inactive at each time step.
There are 2N different possible states. Then, the network can be fully characterized at any time step
t, by the vector: S(t) ∈ {−1, 1}N .

One can notice that Hopfield networks are highly flexible and can handle inputs of various dimen-
sions (1D, 2D, 3D, 1000D...) As a matter of fact, we can visualize a network as a line: vector in
RN , or as a surface, where the input are images in R

√
N×

√
N or even videos, R

√
N×

√
N×

√
N . We

can always reshape the input data to suit our visualization needs.

2.3 Store memories

Neurons interactions are described by W ∈ RN×N , that is a symmetrical Hollow matrix2, with
(N − 1)(N − 2) parameters. Since there is no self interaction, we set Wii = 0. A pattern, or
memory, denoted ξµ ∈ {−1, 1}N , is a set of activity states. Considering asymptotic dynamics, if
we store a pattern ξµ, and start with neuron firing states similar to the pattern, we hope that the
network converges toward the attractor ξµ, i.e. lim

t→+∞
S(t) = ξµ. We set W , in the Hebbian-style

synaptic matrix, to store patterns from ξ:

W ≜
1

N

[
K∑

µ=1

ξµ(ξµ)T − diag
((

(ξµi )
2
)
i

)]

In other words, Wii = 0 and Wij = 1
N

∑K
µ=1 ξ

µ
i ξ

µ
j . A pattern is stored when it is a fixed point of

the dynamics.

2.4 Update rules

The network state can be updated either synchronously or asynchronously at each time step ∆t.
We will prefer the latter because it might be more biologically plausible, using a sequential order.
The evolution of the network is deterministic, based on the weighted sum of the activities of other
neurons3.

Si(t+∆t) ≜ sgn

 N∑
j=1

WijSj(t)

 = sgn(⟨WT
i , S(t)⟩)

Where ⟨., .⟩ denotes the scalar product. Note that we did not write this formula with matrix S(t+∆t)
but only for Si(t+∆t) because we consider the asynchronous update rule.

2.5 Energy landscape

Hopfield’s work introduced an energy function, also called Hamiltonian, that decreases during ran-
dom asynchronous updates [3].

2A is a Hallow matrix whenever ∀i, Aii = 0.
3Note that sometimes, we get ⟨WT

i , S(t)⟩ = 0. We will consider that sgn(0) = −1. The bias is set to 0.
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E(S) ≜ −1

2
⟨WS,S⟩

3 Attractors analysis

Now, let’s focus on the definition and characterization of discrete attractors from Hopfield network.

3.1 Localization

Given an initial state S(0), we can asynchronously update each neuron Si. For large t, the system
can have one of these different asymptotic behaviors:

• Fixed point (attractors). The state has converged, and doesn’t change anymore. If the initial
state is similar to a pattern stored, we hope that the network converges toward the pattern:
the network would have successfully retrieved the memory.

• Limit cycles. The state hasn’t converged toward a single state, but there are trapped in a
cycle defined by at least 2 states.

• Chaos attractors. When neither of the above cases apply. There is no single attractors or
”pattern” in the sequence of ”limit states” (chaotic or random).

The energy function E decreases at each state flip of a neuron, during random asynchronous
updates of the network. Therefore, the dynamics of the network are attracted to these local minima
(E(S(t)) will tend to the local minima). Thus, the dynamics tend to attractors, that are fixed points
of the dynamics and local minima of E. Now, let’s try to characterize and locate these local minima,
i.e. what are the states S that locally minimizes E.

Since W is a symmetric and real matrix, the Spectral theorem holds. We can have a new vector
basis: RN =

⊕
λ∈Sp(W ) Eλ(W ) =

⊕N
i=1 Span(Vi), where Vi are eigenvectors of W associated

with their eigenvalue λi. Each state S, can be expressed in this new basis Span((Vi)i) = RN . Let
S =

∑N
i=1 αiVi. Then4,

E(S) = −1

2
⟨WS,S⟩ ≥ −N

2
ρ(W )

= −1

2

〈
N∑
i=1

αiWVi,

N∑
j=1

αjVj

〉

= −1

2

N∑
i=1

N∑
j=1

αiαj⟨λiVi, Vj⟩

= −1

2

N∑
i=1

α2
iλi

Thus,

min
S

E = min
S=

∑
αiVi

−1

2

N∑
i=1

α2
iλi ≥ −1

2

(
N∑
i=1

α2
i

)
maxSp(W ) = −N

2
max Sp(W )

We obtained a lower bound for E, because here ⟨S, S⟩ = N . E is minimal when S is collinear with
the eigenvector associated with the highest eigenvalue. However, S might not belong to {−1, 1}N .
Note that as Tr(W ) = 0, and if W ̸= 0N,N , then there exist at least on eigenvalue strictly positive

4Where we defined the spectral radius, ρ(W ) = {|λ| : λ ∈ Sp(W )}.
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and one strictly negative. So W can’t be positive semi definite (case where E = − 1
2S

TWS ≥ 0).
The local minima of E depends on the singular value decomposition of W that catches the effect of
the update rule WT

i S(t).

3.2 Associative memory capacity

Considering a Hopfield network with N neurons, the goal is to store patterns, and be able to re-
trieve them. However, the maximum number of patterns that can be stored depends on the number
of neurons, but also on the designing of the energy function [5]. Since attractors are located in
local minima of E, this function must accurately describe interactions between state and patterns.
The storage capacity with small retrieved error in the vanilla Hopfield network is in O(N). More
precisely Kmax ≈ 0.14N [3]. As a matter of fact, we can write the Hamiltonian for the standard
Hopfield network, with K patterns5:

E(S) = −1

2
⟨WS,S⟩

= −1

2

[
1

N

K∑
µ=1

〈
ξµ(ξµ)TS, S

〉
−
〈
diag

((
(ξµi )

2
)
i

)
S, S

〉]

= − 1

2N

[
K∑

µ=1

⟨ξµ, S⟩2 − ⟨ξµ ⊙ ξµ ⊙ S, S⟩

]
∈ R

Note that in case, Wii = 0, E is not necessarly negative. Here the function underlying is F : x 7→
x2, that characterizes the energy function. In some cases, it is possible to obtain Kmax ≈ N by
modifying it [6]. J. Hopfield explains in Dense associative memory for pattern recognition, that
the vanilla Hopfield gets confused when many stored memories have the same contribution to E.
If ξµ ξµ

′
are close to each other (high overlap), instead of having two distinct local minima, we

might have a single local minimum in between. By using F a monomial function F : x 7→ xn [7]
or rectified polynomial energy function, the storage capacity of the network, increases drastically:
Kmax ≈ αnN

n−1 [5].

3.3 Visualization

We ran some experimentation [1], with various Hopfield network sizes, in order to observe where
are attractors located for some specific examples. For each size of neural network N , we plot the
energy function in the space E : [−1, 1]N → R. We also visualized the convergence of initial states
with colors. We map the space with n = 7 points between -1 and +1 in each dimension, and run
asynchronous sequential update, with T ≫ N in order to reach the asymptotic state.

Case N = 2

Figure 1: Energy surface and attractor visualization for ξ = (−1, 1).
5Where (A⊙B)ij = AijBij is the Hadamard product: the element-wise (or pointwise) multiplication.
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This is the simplest case. We observe that there are two attractors: ξ the stored pattern and −ξ, the
reversed state. We can draw a line in the surface [−1, 1]2 that delimits initial states and that will end
up in ξ or −ξ. Note that the boundary is also influenced by the chosen threshold. Attractors are local
minima of E.

Case N = 3

Figure 2: Energy, attractor visualization and eigenvector W for ξ = (−1, 1, 1).

There is a hyperplane, a plane here, that draws two subspaces that defined the basin of attraction of
each attractor point. In this case, we also ploted the eigenvectors of W and the attractor. We notice
that the vector with the smallest eigenvalue is near ξ. Attractors are local minima of E.

Case N = 4

Figure 3: Energy value for ±1 in the fourth dimension, for ξ = (1,−1, 1,−1).
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Again, here we have that E(±ξ) is the lowest value, and ±ξ are attractors points.

3.3.1 Case N = 3, K = 2

Figure 4: Energy, attractor visualization and W ’s eigenvector (2 orientations) for two patterns ξµ.

Now, we want to store three patterns. Actually, it is not possible, but we will try it to see what
is happening in this case. The patterns are (−1,−1,−1), (1,−1,−1). Attractors are located at
(1,−1,−1), (−1, 1, 1), and they are opposed and correspond to the second pattern. The eigenvector
in black is in the same direction as these attractors and define a plane that separates the space in two
basins of attraction. Attractors are local minima of E.

4 Conclusion

This study aimed to understand the localization and visualization of attractors in Hopfield networks,
focusing on their spatial distribution, number, and capacity. We saw that it depends on network size
N , but also on the definition of energy function. We saw that in 2D and 3D, attractors correspond to
the local minima of the energy landscape. Hebbian learning states a definition for neurons interaction
W , however, when there is no self interaction, minE is not a convex problem and thus has multiple
local minima. By changing E, we can also improve the network capacity. Hopfield networks are
characterized by discrete attractors points, that seems to be linked with W ’s eigenvectors, even
though the relationship is more complex. If the goal is to approximate biological neurons, certain
assumptions should be removed, such as symmetrical weights, binary neuron states, etc... While
these assumptions simplify calculations, they do not accurately reflect the complexity of biological
systems. Future research could explore with bigger networks and observe attractors for different
level of overlapping.
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