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ABSTRACT

Table Extraction (TE) consists in extracting tables from PDF docu-
ments, in a structured format which can be automatically processed.
While numerous TE tools exist, the variety of methods and tech-
niques makes it difficult for users to choose an appropriate one.
We propose a novel benchmark for assessing end-to-end TE meth-
ods (from PDF to the final table). We contribute an analysis of TE
evaluation metrics, and the design of a rigorous evaluation pro-
cess, which allows scoring each TE sub-task as well as end-to-end
TE, and captures model uncertainty. Along with a prior dataset,
our benchmark comprises two new heterogeneous datasets of 37k
samples. We run our benchmark on diverse models, including off-
the-shelf libraries, software tools, large vision language models, and
approaches based on computer vision. The results demonstrate that
TE remains challenging: current methods suffer from a lack of gen-
eralizability when facing heterogeneous data, and from limitations
in robustness and interpretability.
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1 INTRODUCTION

In PDF documents, such as scientific publications, business or ad-
ministrative reports, etc., tables are often used to represent data in
a way that is easy to read by humans. As the number of documents
increases, some containing tables with unique information, which
cannot be easily found in other sources, retrieving the set of all
tables from these documents is a crucial task to enable their auto-
mated analysis. This is the goal of table extraction (TE). TE is
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often a first step of data analysis pipelines, e.g., to answer questions
over tables [3, 20], combine them within a data lake [29, 31, 48],
etc.

In this paper, we propose carefully justified metrics for compar-
ing TE methods, and evaluate them on numerous TE methods in
an end-to-end fashion, on scientific PDF documents. Prior research
has studied two core TE sub-tasks: Table Detection (TD) and Ta-
ble Structure Recognition (TSR), often studied and evaluated
independently [8, 27, 35, 58]. In this work, we review existing meth-
ods on heterogeneous datasets, ranging from simple rule-based
libraries to complex software, including a Large Vision Language
Model (LVLM) and object detection systems based on transformers.

Our main contributions are as follows: (1) We propose a new
framework for TE evaluation, with formally justified, new end-
to-end metrics; (2) We created and made publicly available two
novel datasets for TD, TSR, and TE, with high-quality ground-truth
data; (3) We compare academic methods to those widely used in
practice, on three benchmark datasets. While prior work assessed
TE subtasks in isolation, this paper enables end-to-end quality
evaluation of TE methods.

We define the TE, TD, and TSR tasks in Section 2, also discussing
the relevant literature. We describe our datasets and the methods
we compare in Sections 3 and 4, respectively. We present evaluation
metrics in Section 5 and our evaluation methodology in Section 6.
Experimental results are in Section 7. Our benchmark is available
at https://gitlab.inria.fr/msoric/table-extraction-benchmark, with
additional material and further details also provided.

2 TABLE EXTRACTION

We consider a table extracted from a document to be a list of
rows, each of which consists of a list of cells. Further, each cell has
a content, that may be textual, numerical, mixed, etc. Note that
different rows may have different numbers of cells; this is due to
merged cells, i.e., cells spanning several rows and/or columns.

We use the following formal representation of the structure of
an extracted table (see Figure 1 for illustration). Given two natural
numbers k < n, we denote by [k:n] the set {k,k + 1,...,n}, and
write simply [n] for [1:n]. Let (n, m) € N* be the shape of a table,
i.e., its number of rows and columns. Each cell is defined by the
tuple (i, j,r,c) € N* where (i, j) is the location of the cell, and
(r + 1,¢ + 1) are the number of rows and columns spanned by the
cell. We require i € [n],i+r € [n], j € [m], j+c € [m]. Any two
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Figure 1: Sample table where (i, j) pairs indicate the location
of each cell. When omitted, default values for r and ¢ are 0.

distinct cells defined by (i, j,r,c) and (', j’, 1, ¢’) are disjoint, i.e.,
[izi+r]Nn[i’:i’+r]=@and [j:j+c]N[j:j + '] =2. Since
r,c > 0, the location of a cell that spans multiple rows or columns
is defined by the location (i, j), of their top-left corner cells. We call
a cell simpleif r = ¢ = 0, i.e., the cell does not result from fusion. A
table has at most be n X m cells, but there might be fewer, if some
cells are merged (non-simple).

2.1 Table Extraction Tasks

Table Extraction (TE) involves detecting and recognizing a table’s
logical structure and content from its unstructured presentation in
a document. TE can be decomposed in subtasks, as follows.

Table Detection (TD). This consists in detecting tables in an input
document (PDF document, or page given as a bitmap image). We
assume tables are aligned with the axes of the pages, and might
have been rotated by +90 degrees. Typically, a table is detected as a
rectangular bounding box (xo, o), (x1, y1), where xo, yo, x1, and
y; are the coordinates of the top left corner and bottom right corner
of the bounding box, respectively. Note that some TE models do
not output bounding boxes, but only HTML tables.

Table Structure and Content Recognition. Table Structure Recog-
nition (TSR) consists in recognizing the structure of a table in terms
of rows, columns, and cells. The input can be a cropped table image
or a page image with detected table bounding box. Table Content
Recognition (TCR) identifies the content (characters) within each
cell. Clearly, TCR depends on TSR for the identification of cells;
the two tasks are often performed together. Thus, by a small abuse
of language, and for coherence with prior work, we will denote
both tasks by the TSR acronym. At the end of TSR, the table is fully
captured in the structured format introduced earlier, and directly
rendered in HTML with its rows, cells, spans, and content.

2.2 Prior datasets and benchmarks

The literature comprises several benchmarks for TD and TSR, the
latter with or without TCR. In 2013, a TD competition was intro-
duced based on a small dataset (128 images) [27]. TableBank [35]
proposed a larger dataset for TD and TSR, but does not include TCR.
SciTSR [8] and FinbTabNet [58] focused on TSR only with respec-
tively scientific papers and financial reports. The largest dataset
available is PubTables-1M [57] (2021) that counts one million tables
for TD and TSR. Most recent datasets like TabRecSet [64] include
images from real-world scanned documents.

Existing benchmarks tackle TD and TSR as two independent prob-
lems and do not evaluate the quality of end-to-end TE methods. Con-
sider a two-step TE method involving two models where the input
of the TSR model is the output of the TD model. While TSR datasets
provide the same cropped table images to different models for evalu-
ation, in downstream tasks, the performance of the TSR model may
be artificially degraded by the output of the TD model; this phenom-
enon is disregarded evaluating TD and TSR separately. However,

downstream TE applications are impacted by the end-to-end TE re-
sult quality. This is why we need an end-to-end benchmark, and
thus new metrics for evaluating the end-to-end model synergy.

Another limitation of existing benchmarks is that they only con-
sist of positive instances, i.e., each sample includes at least one table.
As we will show, this inflates precision scores and reduces their
relevance for real-world performance

Existing TE methods. An end-to-end TE model processes a docu-
ment (or a page) to extract tables. Early heuristics methods relying
on hard-coded patterns were limited to specific table types [7, 17,
25, 26, 52, 61]. Machine Learning (ML) later improved generaliza-
tion [14, 23, 28, 30] but required heavy feature engineering, which
was eventually surpassed by Deep Learning (DL) models [4, 53].
Thanks to larger training datasets, deeper networks and more effi-
cient architectures, these now achieve superior accuracy and ver-
satility. Notably, [22] used CNN for TD, and DeepDeSRT [54] was
the first to use Faster R-CNN-based models for TD and TSR. Some
models are focused on certain data types, for example scans of
paper documents with distortion [42], others on robustness. We
present in detail state-of-the-art methods in Section 4.

3 OUR BENCHMARK

We have designed a benchmark for evaluating the quality of end-
to-end TE methods. Our benchmark is based on three datasets of
scientific documents typeset in PDF. Each of which contains: as in-
put, document pages (both as PDF files and as individual rasterized
images) with coordinates of each word appearing within the page
(such coordinates can be obtained by standard PDF or image anal-
ysis libraries such as PDFAlto and PDFMiner!); as output, every
table identified within each page with bounding box coordinates,
as well as content and structure formatted as HTML markup.
First, we used a subset of the largest prior TD/TSR dataset
(PubTables-1M), enriched with additional information (see below).
However, this dataset lacks diversity, as most tables share sim-
ilar templates and appearance. To address this, we generated a
heterogeneous dataset of equivalent size (“Table-arXiv”), and
manually built a domain-specific one (“Table-BRGM”) from geo-
logical scientific reports. Its interest is that its layout significantly
differs from the others, mainly because these were mostly produced
with a Word processing software rather than a typsetting system
such as KIEX. Table 1 shows dataset statistics; we detail them next.

PubTables-Test. PubTables-1M is a dataset of 1M tables from
scientific articles in PubMed Central Open Access [24]. We used
the raw test dataset of PubTables for evaluation, and additionally
retrieved PDF files from PubMed from which images from the
dataset were taken. Since not all PDFs were available in PubMed,
we used a subset of the initial dataset composed of papers with
valid PDF files and that could be matched to the individual images.
As the original dataset only contains table structure coordinates but
not structured table content, we generated ground truth tables as
HTML markup. All documents come from the biomedical domain
and tend to be fairly homogeneous in the way tables are typeset;
based on PDF metadata, most documents were produced using
professional publishing systems such as Adobe Indesign.

Uhttps://github.com/kermitt2/pdfalto, https://github.com/pdfminer/pdfminer.six
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Table 1: Summary of datasets used in our benchmark. (L: BETEX, W: Word, P: Professional publishing system, O: Other)

Dataset Topic Language % Type Count

L W P O #PDF #Pages #Positives # Tables
PubTables Biomedical, life sciences English 0 1 8 14 23175 46942 46942 55990
Table-arXiv ~ Math, physics, astrophysics English 100 0 0 0 2443 36869 5214 6308
Table-BRGM Geological reports French,English 33 67 0 0 6 499 91 124

Table-arXiv. To ensure heterogeneity within our data, we have
also automatically generated “Table-arXiv”, a new dataset of 36k-
samples dataset built from 2443 KIEX source files from arXiv?
preprints for ground truth generation. These sources were sam-
pled from the last 20 years and across all arXiv domains to ensure
heterogeneity in the data. Using the KIEX source code, we auto-
matically generated TD and TSR (with TCR) annotations: for TD,
by instrumenting the commands starting and ending a tabular
environment to add anchors that allow tracking their locations
within the generated PDF; for TSR, we used LaTeXML3 to generate
HTML markup tables from the source file.

Table-BRGM. We have constructed a last dataset, denoted as
“Table-BRGM”, that is domain-specific and comprises French and
English geological reports sourced from a selection of BRGM doc-
uments — BRGM is France’s reference public institution in Earth
sciences. The documents contain geological survey reports and
records. We manually annotated this dataset for TD and TSR (for
TSR, by first employing an end-to-end model and then manually
correcting its output). Reports mainly come from documents pro-
duced by Word processing software, but some also originate from
KTgX-compiled documents. The dataset also contains heteroge-
neous tables: large tables, tables with or without borders, empty
cells, merged cells, etc., in English and French.

4 END-TO-END METHODS

Table 2: End-to-end methods for table extraction

Method Input type TCR Output Steps
Location Conf. HTML
Camelot PDF PDFMiner v v 1
PyMuPDF PDF PyMuPDF v v 1
PDFPlumber PDF PDFMiner v v 1
Grobid PDF PDFAlto v v 1
LVLM Image LVLM v 1
PDF EasyOCR v v 2
TATR-extract Image PDFAlto v v v 2
XY+TATR-extract Image PDFAlto v v v 2
VGT+TATR-structure Image PDFAlto v v v 2

We tested various methods, ranging from simple Python libraries,
to well-established extraction platforms, a large vision language
model (LVLM) and computer vision-based methods. Some (but not
all) methods output a confidence score along with their predictions.
Table 2 summarizes the methods; Conf. stands for confidence.

4.1 Baseline Models (without confidence scores)

Our first four models, referred to as “baseline models”, output table
predictions but no uncertainty measure.

Zhttps://arxiv.org/
3https://github.com/brucemiller/LaTeXML

4.1.1  Commonly used Python libraries. We selected popular TE
Python libraries on Github: PDFPlumber, PyMuPDF and Camelot,
with respectively 8.1k, 7.8k and 3.4k stars.

PDFPlumber [55] provides detailed information about each text
object in a PDF file; it extract tables through rule-based heuristics.
Inspired by Tabula? and [12], it leverages the lines that are explicitly
drawn in the PDF, or implied by the word alignment on the page.
While widely used, PDFPlumber only handles simple layouts. It
lacks robust support for complex, multi-column, or merged-cell
table structures, commonly found in real-world documents.

PyMuPDF’ allows to analyze, extract and convert PDF (and other)
documents. For TE, it leverages the presence or absence of lines,
rectangles or other supporting vector graphics.

Camelot® also leverages rules for TE. It is widely adopted for its
simplicity and ease of integration. However, it may struggle with
complex layouts featuring merged cells or inconsistent formatting.

Another similar library is PDFTables but it is no longer main-
tained, thus we do not include it. We also experimented with com-
mercial tools, such as Docsumo®. Extraction quality was very un-
even, thus we considered that it did not justify its cost, e.g., Docsumo
charges 89 USD for analyzing 1000 pages.

4.1.2  Grobid. GeneRation Of BIbliographic Data [40] (Grobid®) is a
machine learning library for extracting, parsing, and re-structuring
raw documents such as PDF into structured XML/TEI-encoded
documents, with a particular focus on technical and scientific pub-
lications; it is used in production, e.g., on France’s preprint server
HAL. Grobid structures the document’s text body into paragraph,
section titles, reference, figures, tables, etc., which it represents as
XML, e.g., tables appear as: <table>, <row>, and <cell> elements;
table coordinates are provided as attributes.

4.1.3 LVLM. Next, we consider a multimodal (text and image)
Large Vision Language Model (LVLM). We chose OpenAI’s “GPT-
40 mini” [46] since it is recent, popular, reported to perform very
well on multimodal tasks, and cost-efficient (0.29 USD for 1000
pages). We will denote it simply by LVLM below, and use it in
zero-shot mode for TE. Given an image and a prompt, the LVLM
outputs an HTML table; it does not provide pixel coordinates. As we
will discuss in Section 6.1, this raises a challenge when evaluating
the method (the gold standard does include coordinates). Also, we
cannot guarantee the absence of contamination: the LVLM may
have been trained on some datasets from the benchmark.

“https://tabula.technology/
Shttps://github.com/pymupdf/PyMuPDF
®https://github.com/camelot-dev/camelot
"https://github.com/pdftables/python-pdftables-api
8https://www.docsumo.com/
“https://github.com/kermitt2/grobid
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4.1.4 Docling. Docling [2] is an advanced Python library for PDF
document processing and understanding (40.1k stars on Github).
Docling extracts tables in two steps: it leverages RT-DETR [66] for
TD, and TableFormer [44] for TSR, while relying on EasyOCR?®,
a third-party OCR library, for TCR. Even though Docling uses an
object detection model for TD, it does not provide table confidence
scores for this task.

RT-DETR finds different layout components (table, text, title,
picture, caption, footnote, formula, etc.) for each page. RT-DETR
is based on DETR, which will be explained in more detail in Sec-
tion 4.2.1. RT-DETR adds an efficient hybrid encoder that processes
multi-scale features (inspired by Deformable-DETR [70]); and the
uncertainty-minimal query selection (inspired by DINO [65]) that
improves the quality of initial object queries. This model has been
re-trained on the DocLayNet dataset [51], gathering diverse data
sources to represent a wide variability in layouts.

TableFormer [44] is a vision-transformer model that identifies the
structure of a table by using a custom structure token language [41],
starting from an image of the table. The model architecture is com-
posed of a CNN backbone network that encodes the image which is
then provided to the encoder producing features that represent the
input image. Then, the features are then passed to both the trans-
former decoders: Structure Decoder and Cell BBox Decoder. The
former generates the logical table structure as a sequence of tokens
(HTML tags), while the latter predicts simultaneously bounding
boxes of table cells. This TSR model handles many characteristics
of tables, such as partial or no borderlines, empty cells, rows or
columns, cell spans, tables with inconsistent indentation or align-
ment and other complexities.

4.2 TATR-extract

Next, we use a model that output confidence. We refer to this type
of model as “probabilistic models” (even though confidence scores
are not always probabilities).

4.2.1 DETR. TAble TRansformer (TATR) [57] is composed of two
models: one for TD, and the other for TSR. Both models use the
DEtection TRansformer (DETR) [6] architecture.

DETR is an encoder—decoder transformer model for object de-
tection tasks. The architecture is divided into two parts: a backbone
model (CNN) which extracts image features, fed into a transformer.
Its neural architecture enables DETR to predict all objects at once
(in parallel). In contrast with prior approaches, e.g. [39, 60, 69],
DETR does not need to be given “anchors” (regions where to look
for candidate objects to extract). Instead, DETR learns a small, fixed
number of position encodings, so-called object queries, and uses
them for extraction.

DETR outputs a fixed number of predictions that include bound-
ing boxes, object labels and confidence score distributions. TATR-
detect is the TD model, abridged to TATR-d in Figure 2; its output
feeds the TATR-structure (TATR-s) model which performs TSR.

4.2.2 TATR-extract pipeline. Given a page as an image, TATR-
detect performs object detection on the image with 3 classes: “table”,
“table rotated” and “no object”. It outputs 15 predictions, each with
bounding box coordinates and confidence scores for each class.
In the original inference implementation, only the label with the

Ohttps://github.com/Jaided Al/EasyOCR
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Figure 2: TATR-extract pipeline for table extraction

highest confidence score was retained, dropping predictions clas-
sified as “no object” even if their confidence for “table” or “table
rotated” was relatively high (while lower than that of “no object”).
In our experiments, this sometimes lead to poor performance. To
mitigate this loss of information, we modify TATR-extract to retain
all predictions where the confidence score for either “table” or “ta-
ble rotated” exceeds a threshold of 0.05. This adjustment ensures
that potential table detections are preserved, resulting in a refined
set of predicted tables. We then apply Non-Maximum Suppression
(NMS) [15] to eliminate overlapping table predictions!!. We further
filter out predicted tables that lack any tokens within their bounding
boxes, excluding empty detections. We use PDFAlto to extract the
tokens in a document. However, for tables embedded as bitmap
image (tables as images) in a PDF, PDFAlto is unable to extract the
tokens present because images have no extractable text/lines in
PDFs. Such tables are not retained if detected.

For each table , TATR-structure then processes the cropped image
and associated tokens. The image is padded with white pixels to
align with the training data format used for DETR. In each resulting
image, TATR-structure performs object detection across seven table

» &«

structure classes (“table”, “table column”, “table row”, “table column
header”, “table projected row header”, “table spanning cell” and “no
object”). Several post-processing steps are applied on the output of
TATR-structure to obtain an actual table, also complete with textual
cell content. First, TATR-structure outputs overlapping bounding
boxes (columns and rows), which are modified to obtain aligned
cells. Further, to identify the tokens in each table cell, we compare
the tokens’ bounding boxes with those of the cells. Finally, tables

are exported into HTML mark-up.
4.3 XY-cut+TATR-extract

Next, we introduce a new probabilistic model, XY-cut+TATR-extract,
based on TATR-extract.

We noted that TATR-detect was sometimes wrong on pages
containing multiple tables: either some were missed, or, when rec-
ognized, their confidence scores were low. As explained in Sec-
tion 4.2.1, the bounding boxes used for prediction come from the

yanilla TATR did not require NMS because it kept only the most likely label (a table
or “no object”). Our choice to prioritize “table” predictions makes NMS necessary.
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transformer decoder output. Object queries (decoder input) are
positional embeddings learned during training, which contain ab-
stract information about spatial locations, or “where should the
model look?” Thus, each output, which is directly associated to an
object query, is roughly specialized in an area. To mitigate this, we
pre-process each page input to TATR-extract, by isolating layout
components that are isolated by white space; for this, we rely on
the algorithm XY-cut [21].

XY-cut works as follows. By counting the number of black pix-
els!? along each axis, X and Y, we obtain profiles of pixel distri-
butions, which are used to isolate rectangle components to form
sub-images. This process is recursively applied until stop criteria
are met (a minimum area is found). Each sub-image is then fed
as input to TATR-detect. This allows to help the model focus on
individual areas where many tables are unlikely (these are usually
separated by white areas, which XY-cut identifies).

Within XY-cut+TATR-detect, instead of keeping 15 predictions
(as in for TATR-extract), we keep only the two most confident
predictions, as XY-cut should already have split the tables into
separate images. Indeed, image chunks issued by XY-cut contain
almost no white space gap; they are titles, paragraphs, tables, figures,
etc. As in Section 4.2, we apply NMS, and eliminate empty tables
(those containing no symbols) before running TATR-structure.

4.4 VGT+TATR-structure

Our final probabilistic method follows a pipeline similar to that
of TATR-extract, where TATR-detect is replaced with a different
component, namely VGT (discussed below).

Document Layout Analysis (DLA) consists of transforming docu-
ments into structured representations, on which information extrac-
tion can be performed. Some DLA approaches are based on visual
information (like TATR-detect, that only performs TD and not the
whole layout segmentation), but more recently, models also use
textual information'® from documents. Vision Grid Transformer [9]
(VGT) is a DLA tool. In contrast with TATR, which only uses vi-
sual information, VGT also relies on textual information, which it
views as a 2D grid. This model achieves state-of-the-art results with
the best Average Precision score on TD over the PubLayNet [68]
dataset. VGT has two parts:

(1) A Vision Transformer (ViT), which models visual informa-
tion, inspired by ViT [11] and DiT [34]. The input image is split into
non-overlapping patches that are flattened and linearly projected
to get a sequence of tokens embeddings that is then fed into ViT.

(2) A Grid Transformer (GiT), that models 2D language infor-
mation. The input image is seen as a 2D token-level grid which
feeds GiT (architecture similar to ViT). GiT has been pre-trained
with Masked Grid Language Modeling (MGLM), inspired by BERT’s
Masked Language Modeling [10] in order to learn better token-level
semantics for grid features.

Overall, the framework aims to generate better embeddings from
the input image page, in order to feed detection framework that
performs object detections using 6 classes (“title”, “text”, “figure”, “ta-
ble”, “list” and “no object”). The detection framework is the Cascade

12 Assuming PDF reports are written in black on a white background.
I3TATR-structure uses token positions only in post-processing, not during the actual
TSR task (row, columns, header, etc.)

R-CNN [5] detector, which is implemented based on the detection
library Detectron2 [62].

The VGT+TATR-structure pipeline combines the VGT table de-
tector, with the TATR-structure recognition model. For each table
prediction (bounding box with a confidence score) output by VGT,
we do not know whether it is rotated or not, yet that matters in
order to use TATR-structure, that takes as input only non-rotated
tables. To find out whether a table is rotated, we simply look at the
average shape'? (length and width) of the tokens within the table.
Then we use the same post-processing as for TATR-extract (rotate
tables, remove empty tables) as discussed in Section 4.2.2.

5 METRICS

In this section, we present metrics used for TD, TSR and TE.

We first introduce some notations. From now on, we highlight
the first occurrence of each notation encasing it in a box, for quick
reference. Let | P | be the set of TE model outputs: each of its element
is a tuple that includes a bounding box, an HTML table represen-
tation, and if available, a confidence score ctap1e. When the models
lack a confidence score, we consider cpe = 1 in all P entries.

We define C P as the set of positive predictions: those that
we consider to be actual tables. For the simple baselines where
Cable = 1, we have P* = P. For probabilistic models, where
confidence scores can be interpreted as table probabilities, we use a
threshold m to define positive predictions. This threshold draws
a decision boundary: only predictions with scores above it are
counted as positive. In this case, we set to be {(g,c) € P |
Crable > 0.}, with confidence score threshold 6, € [0, 1].

5.1 Table detection (TD)

TD performance can be evaluated using traditional metrics inspired
from Information Retrieval. Specifically, a True Positive (TP) is a
table correctly recognized, a False Positive (FP) is a table found
by the model where a human user would not consider a table
exists, and a False Negative (FN) is a table recognized by human
users but missed by the model. Given a table predicted by the
model, and a table in the gold standard, to identify TPs, we rely
on the Intersection-over-Union (IoU) metric between the areas of
the prediction, and the gold standard tables. If IoU is above a given
threshold e [0, 1], the prediction is counted as a TP. For a given

TD method, [P+ |c $* denotes the set of true positive predictions.

5.1.1  Probabilistic metrics. The value 0y = 0.5 is a natural choice,
because if we consider non-overlapping predictions, we can get
only one prediction with IoU greater than 50% (TP) per ground
truth. However, different §; values are also sometimes used. For
instance, the ICDAR 2019 competition cTDaR [16] computes F;-
scores with 0; € {0.6,0.7,0.8,0.9}; then, they compute WAvg(F;),
which is a weighted average of F;-scores for these four 0; values,
with weights proportional to their thresholds. Thus, the F;-score
based on higher thresholds are given more importance.

Let us discuss the mathematical basis for choosing such a set of 05
values. A general, principled way to compute a threshold-dependent
metric Xy, such as Precision, Recall or F;-score, is an integral over
the interval comprising all possible 8; values. WAvg(X) can be

4Most of the time, tokens are multi-character words that are longer than they are
wide (counting pixels).



seen as a discrete approximation of such an integral. Further, the
weighted average can be interpreted as the expected value of the
random variable (RV) Xy according to a piecewise linear probability
density function (pdf, in short) f;, where s is a parameter between
0and 1and f; : x = o, - x - 1[51](x). Here, 1[4 is the indicator
function whose value is 1 on [s,1] and 0 everywhere else, and
as > 0 is a normalization factor to ensure f; is a pdf.

Now, let us view 6; as a real RV with values in [0, 1]. As pdf,
we chose two different functions: f; the simplest and most naive
version, and f 5 that generalizes WAvg. After some normalization,
we get fo(0) =2-60-1[1)(0) and f;5(0) = % -0 -1[51](0). Fora
random variable §; distributed according to pdf f, we write ; ~ f.

Definition 1 (Expected Precision and Recall). Let

be the Precision, Recall and F;-score obtained with the random
variable threshold 6;. Under the assumption that 8; is sampled
according to the probability distribution function f, we have:

1
Eo,~r[Po;] = P Z Egy~r[115>0,1]
iepPt

1
Eg,~f[Ro,] = Gl Z Egj~f[115>0,1]
ieP*
where |G| is the number of ground truth tables and J; the IoU for
the positive sample i.

From now on, we use | E;[X] | as shorthand for Eg, ., [Xp, ], for
some s € [0, 1] and metric Xg, € {Py,, Ry}, F1,9, }- Note that E;[X]
becomes stricter as s increases.

5.1.2  Average precision. For probabilistic model, the set of positive
predictions P+ € {Py_} 9, depends on the choice of a confidence
score threshold 0., thus we obtain a set of corresponding scores
{Xp, }o.- To aggregate over several §. values, in the object detection
literature, the Average Precision metric is used. Authors of [38]
introduced performance metrics for object detection: Average Preci-
sion (AP) at multiple IoU threshold values (0.50, 0.75, or a range),
and with APy, being the main metric.

For probabilistic models that output a confidence score c; on
each prediction k (that is, bounding box plus label), we can rank
predictions in the increasing order of their confidence score. Let
(C(k))k be the ordered sequence. Thus, we can compute Precision

and Recall, denoted as and , at confidence score 6, (where

the positive predictions are elements from $; ) and at matching

threshold 6;. We obtain a list of pairs ((Pg;k) , R;(]k) ))k that defines

a Precision—Recall curve where the horizontal coordinate is given
by R and whose y values form a “staircase” dictated by the values
Py, (R) (see Section 7). We use the Scikit-learn library [50] which
computes APy instead of the Pascal VOC metric [13] to account
for the entire recall range, rather than focusing on specific recall
threshold.

5.1.3  Estimating model confidence via its (mis)calibration. The met-
rics used above (Xp,, Es[X] and APy, ) rely on binary decisions,
where each prediction is either positive or negative. However, a
more finer-grain evaluation should account not only for these bi-
nary choices but also for the associated confidence scores.

A model is said to be calibrated when its probabilities (con-
fidence scores) are aligned with the real-world outcomes [19]. A
calibrated model is desirable because its predictions can be seen as
more trustworthy. Formally, model calibration is defined by:

P[Y=Y|P=p]=p

where [Y = Y] is the event “the model prediction is right” and
[ﬁ = p] is the event “the confidence score (seen as a RV) is equal to
p” for p € [0,1]. If this is the case, the random variable P perfectly
reflects the prediction trustworthiness. Based on this definition,
the miscalibration of a classifier can be measured by the expected
calibration error (ECE) [43].

However, in the case of object detection, we cannot enumerate
[? =Y], but only [? =1AY = 1], because there is a multitude of
negative locations (possible bounding boxes that do not contain a
table). Thus, for an object detection model, calibration is measured
with respect to the precision [32], leading to the object detection

version of ECE, or | D-ECE |, in short:

D-ECE = B; [[[7 = v =1

P=p|-4 &

To compute D-ECE efficiently, (2) approximates (discretizes) (1)
by partitioning predictions into M equal bins, and taking a weighted
average of the bins’ (Precision — Confidence) gap. n is the number
of predictions, and By, is the set of indices of predictions whose con-
fidence falls between 2! and 4 The prec and the conf functions

M
compute the average precision and confidence, respectively:

M
B
D-ECE =~ Z u |prec(By,) — conf(By,)| (2)
m
m=1

We compute this score over P to obtain an overall calibration error.

5.2 Table structure recognition

To evaluate TSR result quality, we need to check that the predicted
table has the correct table shape (topology, structure), and that cells
have the expected content.

A naive approach for TSR evaluation could be to tackle it as an
object detection task by comparing predicted bounding box cells
with Ground Truth (GT) cells by their absolute positions. Such an
approach is used to evaluate TATR-structure in [57]. This approach
is vulnerable to shifts: a slight shift along one or both coordinates
of a predicted bounding box cell would disproportionately penalize
the models. However, essential information describing the table
structure is in the relative structure/position of cells, rather than
their absolute coordinates. Therefore, we prefer metrics that rely
on the structure, not on absolute coordinates.

The 4-gram BLEU score [47] (BLEU-4) metric can be applied
by comparing HTML tables as strings. It allows comparing at the
same time, markup structure (tags) and content between predic-
tions and GT. However, BLEU-4 evaluates exact (not partial) match
cell correctness, and does not capture the accuracy of the table’s
spatial representation (cells under/above one another, etc.) The
DAR metric [18] (Directed Adjacency Relation) is based on imme-
diate neighbors: the relative positions of non-empty cells (which
cells are adjacent to a given cell). However, it does not capture the
global 2D structure: a table can be locally consistent but globally
wrong, notably regarding the overall placement of cells relative to
the whole table and table rotation.



Thus, we chose to use two metrics: GriTS [59], which evaluates
tables directly in their matrix form and computes a similarity be-
tween these matrices, and TEDS [67] which compares tables seen
as trees of HTML tags. We describe these metrics below and show
that they satisfy our requirements.

5.2.1 TEDS. The metric Tree-Edit-Distance-Based Similarity (TEDS)
measure views each HTML table as follows. There is a root <table>
with children <tr> (nodes are table rows). The leaves of the tree are
cells <td> with attributes colspan, rowspan and content. Alterna-
tively, if a model is capable of functional analysis, i.e., distinguishing
header cells from the non-header ones, we could use <thead>, re-
spectively <tbody> to describe parts of a table.

TEDS builds upon the previous Tree-Edit Distance [49], in turn
inspired the Levenshtein Distance [33]. The latter counts the min-
imum number of insertions, deletions, and substitutions to trans-
form a string into another string. Similarly, TEDS counts the node
deletions, insertions, relabeling and content modifications needed
to transform a tree (HTML table) into another, as follows: the
cost to insert or delete and relabel a node is 1; the cost of rela-
beling a cell content is the normalized Levenshtein similarity be-

tween the two strings. Formally, for trees Tp, Tgr: TEDS(Tp, ToT) =
1— EditDist(Tp,TGT)

——— D GI] where | - | is the number of nodes.
max(|Tpl,|TgT1)

5.2.2  GriTS. The Grid Table Similarity (GriTS) family of metrics
distinguishes three levels at which table structure can be identified:
Topology, describing the rows and columns each cell spans over, in
a two-dimensional grid; Content, which refers to the textual content
within each cell; and Location, denoting the rectangular span in a
pixel matrix that is occupied by each cell. This leads to three GriTS
similarity metrics for Topology, Content, and Location respectively.
We ignore the one based on Location (coordinates) since it suffers
from the shift problem described above. Each metric takes as input
two matrices of cells, the prediction and the GT, and computes their
2-dimensional Longest Common Subsequence (2D-LCS, in short). A
GriTS metric is computed in three steps:

(1) Generate the matrices P, G (prediction, GT) from tables. When
computing a Topology metric, each entry (matrix cell) is a value in
Z*; for the Content metric, an entry belongs to V' (strings). We use
the notation E to refer in a general way to the domain of entries.

(2) Identify the two substructure matrices (see below) Pof P and
GofG (of the same shape between themselves) that are the most
similar according to f, the penalty function between the grid cells’
properties. Formally, we call the set of substructures of a matrix M
with rows R and columns C, denoted I, the set of matrices M’ that
have rows R’ and columns C’ respectively included in R and C.

(PG argmax Z f(P;.G
P’,G’have same dimensions

where P, ® are the set of substructures of P, respectively, G. We
call ﬁ G the two-dimensional most similar substructures (2D-MSS,
in short) of the matrices P and G.

(3) We compute a similarity score between P and G, denoted
GriTSy (P, G), using a penalty function f which depends on the
subtask (Topology, Content), as explained below.

The entry-wise penalty function f: E X E — [0, 1] measures the
partial correctness between two entries with the same coordinates;

P+ P+ 5D++ P+
m] str

Figure 3: TSR inputs depending on the TD model type (with

or without a confidence score), and evaluation type (bbox-

based or content-based).

It replaces the 0 or 1 value used for the vanilla 2D-LCS computa-
tion [1]. Concretely, f is IoU for Topology and LCS for Content.
The overall GriTS score is defined as:

Zi,jf(ﬁi,j’ Gij)

GriTSf(P,G) =2
4 Pl + |G|

where | - | is the matrix size (number of grid cells). Recall that f is a
penalty function specific to the distance being computed.

We compute the GriTS Topology and Content metrics from the
HTML markup table representations.

5.2.3 HTML markup vocabulary to be used in our evaluation. One
last aspect needs to be settled with respect to the metrics based on
HTML markup (TEDS and GriTS). Different models used slightly
different sets of HTML tags to represent the tables they understood.
For instance, some models distinguish header and body (using tags
such as <thead>, <tbody>), while others do not. To avoid being
penalized by such inconsistencies, we normalize each output pre-
serving only three tags: <table>, <tr>, <td>. From now on, we
implicitly consider that each TSR metric applies over such normal-
ized outputs (and normalized GT) only.

5.3 Table extraction
We aim at evaluating TE to compare directly end-to-end methods
as a whole. To this end, we propose a metric similar in spirit with
the well-known Precision and Recall metrics, because these are
easily interpretable. Recall how, in Definition 1, we replaced binary
values (1 for TP and 0 for FP) by continuous scores, parameterized
by the Jaccard index score. We use a similar idea, as follows.
Recall that 07 is the Jaccard threshold above which table detection
is considered to have found a table. Then:

Definition 2 (TSR Precision and Recall). Denoting for each de-
tected (positive) table i its Jaccard index J;, given a TSR metric
which associates to each positive i, the score sTSR we define the
TSR precision and recall as:

TSR_ TSR TSR_ TSR
P 2T o RS g 3L ey
iepPt iePt

where 1[},5.9,] is the indicator function whose value is 0 for tables
whose detection score is below 6y and 1 for the others.

Intuitively, in the above metrics, we propagate the strength (or
confidence) of the table detection, in order to also reflect it in the
“downstream” task of TSR.



6 EVALUATION METHODOLOGY

We now explain how we apply these metrics to ensure a fair com-
parison of all models (Section 6.1) and to evaluate end-to-end TE
methods (Section 6.2).

6.1 Content Table Detection

For methods that output table locations (bounding boxes), we
can use the metrics presented in Section 5.1, based on IoU. We
denote the output of such a method by , whose elements are
tuples that include bounding boxes, HTML table representation and,
if available, confidence scores. For models which do not output
bounding boxes (recall Table 2), based on the content, we obtain
whose elements are tuples that include HTML table repre-
sentation and, if available, confidence scores. Accordingly, we call
“bbox TD” and “content TD” the TD evaluations based on bounding
boxes, respectively, table content. After the TD evaluation, TSR
evaluation inputs elements from either PZ* or P%F. Figure 3 de-
picts an overview of possible paths for evaluation. Probabilistic
models offer different ways to evaluate their performance.

As the LVLM (Section 4.1.3) outputs only HTML tables without
bounding box coordinates, we need a way to determine whether a
table has been detected, based only on the predicted and GT tables
HTML markup. This requires correctly identifying “corresponding”
tables across predicted and GT HTML tables, which is not straight-
forward. Recall that here we want to know if the table has been
found, not if its structure is correct (the latter is the job of TSR).
For this purpose, metrics such as ROUGE [37] or BLEU [47], which
are Recall and Precision-based metrics, are sometimes applied, e.g.,
BLEU-4 was used as TSR metric [36] (see Section 5.1). However,
these metrics focus on one aspect only (either Precision or Recall),
and do not measure similarity.

To evaluate LVLM TD results, we characterize tables by their
content (ignoring the table structure tags), by building from each
table a multisets of 2-grams from content present cells. We ignore
table structure tags here because they simply reflect HTML syntax
thus their similarity is not informative; we want to measure how
much cell content is shared by the prediction and GT. Given the
multisets obtained from the prediction (Sp), respectively, from the
GT (Sgr), we define: Jaccard(Sp, Sgt) = % where U is the
multiset union (retaining each multiset element with its maximum
multiplicity), and @ the multiset intersection (based on minimum
multiplicity). We use multisets rather than regular sets to better
characterize cell content, which may contain some repetitions. We
use character-level n-grams instead of the more common word-
level n-grams since the former better reflect character-level errors,
which happen frequently with LVLM, due to hallucination or token
extraction issues. Because of frequent alignment issues for token
extraction (through PDFAlto), especially within mathematical for-
mulas, we do not treat a whitespace as a character.

From now on, we call content-Jaccard the Jaccard index over
2-gram-2-character multisets. Thus, for all models, we can define
TP and FP using content-Jaccard, which leads to P+

str *

6.2 Evaluating TSR Impacted by TD

Traditionally, TD and TSR are evaluated independently:

TD Model = TSR Model =
Xtp ——— Yo Xpsp ——— Yrsr

The TD test dataset consists of a set of page images Xtp and GT

table location annotations Yrp. The TSR test dataset consists of a

set of cropped table images Xtsg and GT table structures Yrsg.
However, in downstream tasks, models are used sequentially

to perform end-to-end TE, thus TSR evaluation depends on TD:
TE Model

TD Model TSR Model
Xp + Itp + P

where # contains the HTML tables, and optionally, the bounding
box coordinates and the confidence score, as shown in Table 2.
Note that for one-step TE methods, we may not be able to separate
(discern) the two sub-models.

Aiming for an end-to-end evaluation, we choose not to use a
predefined dataset Xtsr as input for TSR. Instead, we use the set of
true positives P**| g € P obtained from the TD inference part;
we use 0; = 0.5 to distinguish TP from FP. In this way, the TSR score
better reflects what can be observed in the use of the end-to-end
model. In other words, the evaluation pairs are: (|, Yp) and
(P**|1sr » Yrsr)- This has two consequences: (i) TSR evaluation is

not independent of TD; we denote those scores ; (ii) We can
no longer directly compare TSR|p results between models, since the
input dataset P**|gg is different for each model (determined by
the model’s performance on TD).

Consequently, if TD fails to correctly' detect tables, the structure
model will be penalized. While this may seem “unfair” to TSR
models, it reflects the reality of end-to-end TE result quality, which
are measured on the final results. Moreover, when using one-step
(black-box) models, we cannot separate the detection part from the
structure part.

Given a TSR metric, for each TP i, we compute a score siTSR. The
final TSR|tp score for each model is then obtained by averaging
the scores over the set of TP P**: TSR|p = ﬁ Yicp+ SIOR,

7 EXPERIMENTAL EVALUATION

We describe the settings used for the models under test, then the re-
sult of our evaluation on each task. The datasets used are described
in Section 3. Our code is available on GitLab; we implemented our
pipelines using [56] as starting point. Our benchmark measures
method performance using the previously described metrics in
Section 5.

7.1 Models settings

Among the Python baselines (Section 4.1.1), we used PDFPlumber
and PyMuPDF with the default configuration. We used Camelot
with the Lattice method, which relies on demarcated lines be-
tween cells and outperformed other methods. However, this method
is limited, as not all tables include visible lines.

We used Grobid’s default configuration (Section 4.1.2), which is a
feature-engineered ML approach with a cascading of linear chains of
Conditional Random Fields (CRF). The command processFullText
extracts and structures in TEI (an XML dialect) the full text of PDF
files. From the TEI output, we retrieve table’s locations (page num-
bers) and coordinates (in points) and convert them into pixels with
respect to GT image sizes for comparison.

For LVLM, we used zero-shot learning, with a prompt, to perform
table extraction. The image size parameter (through API) is set to

5For instance, a TP with IoU at 51% may miss part of the table’s content.
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high: LVLM looks at the input as a low-resolution 512 X 512 image,
and then creates detailed crops for each tile of 512 X 512 pixels. The
HTML output is then formatted for content-based evaluation.

For , we use the default convert method to retrieve
extracted tables (location and HTML). We calculate the location
using the minimum bounding box of the table tokens’ convex hull.

For object detection-based methods, we use TATR-e, XY+TATR-
e and VGT+TATR-s, respectively now denoted as TATR, XY and
VGT in figures. Their pipelines are respectively described in Sec-
tions 4.2.2, 4.3 and 4.4. All rely on TATR-s for TSR; we use PDFAlto
to retrieve text content (token) from the initial PDF. Regarding
the parameters, we set p,ys = 100 pixels, which determines how
much padding in pixels will be added around a detected table before
outputting a cropped image of the table. For XY+TATR-e, cropped
images, which are XY-cut outputs, are padded with p,x ¢ = 10 pixels
before being fed to TATR-d. These hyperparameters have been ad-
justed based on TATR-s. Finally, we use the VGT fine-tuned on the
PubLayNet benchmark, DiT-base weights for ViT, BERT tokenizer
with LayoutLM [63] for word embeddings grid model to obtain
the same pre-trained model from the VGT repository [9]. We used
the pipeline of [9], including the PDF parser, to obtain a grid input
(tokens’ position and content on pages).

For bbox TD evaluation, we use the pixel coordinates of images.

7.2 Table detection performance

Figure 4 plots Precision-Recall curves from bbox TD and Figure 5
from content TD over our three datasets. Models are distinguished
by colors (same as in Table 2). We plot probabilistic model scores
with curves, and baseline scores with various-shape dots. Different
line styles denote different metrics: plain curves (or round, colored
dots ®) show Precision and Recall with Jaccard index threshold
at 0y = 0.5 (denoted as ); dotted curves (or triangular dots
A) show expected Precision and expected Recall, corresponding
to m Moreover, we draw iso-F; curves in gray (F; values:
0.2, 0.4, 0.6, 0.8). We omit E([X] to avoid overloading the figures.
The closer a curve is to the top-right corner, the better its trade-off
between Precision and Recall. Figure 5 with content TD is used only
to compare the LVLM with other models. All curves start at (0,1),
which is the hypothetical case of 6, = 1 with a perfect Precision
(because only the most trustworthy predictions are considered),
and end at (1,0), which is the hypothetical case of . = 0 with
a perfect Recall (because all predictions are considered positive).
Curves are decreasing and their tail (constant Precision over a Recall
range until 1) is due to non-vanishing minimum 0., thus models
reach their higher Recall with 6. > 0. Finally, we compute Average
Precision scores with AP, 5, denoted as , which is the area under
the Precision—-Recall curve (see Table 3) to easily compare curves.
Table 4 gathers F; scores for other models.

As expected, results obtained through bbox TD (Figure 4) are
better than those with content TD (Figure 5): detecting a table by
its bounding box is easier than by its content. Performance varies
when changing the datasets. For example, Grobid, trained on scien-
tific documents, has low F;-score on Table-BRGM but significantly
higher on PubTables. XY achieves better performance on Table-
BRGM but does not maintain its lead over the other two datasets.
On our PubTables dataset, TATR obtains an almost perfect score,
on the raw Precision-Recall curve (at §; = 0.5). This is because

it has been pre-trained on PubTables, and our test set has similar
inputs (in terms of layout or table style).

PyMuPDF and Camelot rank among the best on Table-BRGM,
competing with computer vision-based approaches, but they are
worse than Grobid on Table-arXiv, due to the different table types.
PDFPlumber achieves results similar to Camelot but with lower
precision.

Based on Figure 5, we can rank baselines on each dataset. We
write to denote that Model x has worse scores than Model y,
i.e., its performance metrics (precision, recall, F;-score, expected or
not) are lower. For Table-BRGM: Grobid < LVLM < PDFPlumber <
Camelot < PyMuPDF < Docling, while for PubTables and Table-
arXiv: PDFPlumber < Camelot < LVLM < PyMuPDF < Grobid <
Docling. As noted in [46], LVLM struggles with small text and tasks
requiring precise spatial positioning, leading to lower performance.
Models not based on object detection (PDFPlumber, PyMuPDF,
Camelot) are strongly outperformed by the best (Precision, Recall)
pairs obtained for TATR, XY and VGT. Docling, with the advanced
RL-DETR architecture (recall Section 4.1.4), significantly outper-
forms the other methods, particularly on heterogeneous scientific
documents (PubTables and Table-arXiv).

The expected metric used, Eq 5 [X], follows the X, 5 trend, but is
stricter (lower scores) and also adds information about the Jaccard
index. On one hand, on Table-BRGM and Table-arXiv, considering
dotted curves, VGT outperforms TATR-detect-based models. Since
these expected scores include a varying threshold, it means that
VGT predicts bounding boxes that are closer (pixel-wise) to the GT
annotations used. This underlines the fact that VGT delimits a table
right up to its borders, as we did during annotation, contrary to
TATR-detect that stops at the written elements. Thus, the IoU score
is higher which induce higher expected Precision and Recall. On
the other hand, on PubTables, TATR-detect-based models (i.e. TATR
and XY) output bounding boxes which are similar to the ones in
GT (automatically generated), and thus achieve better scores.

Figure 6 illustrates miscalibration for probabilistic models on
PubTables and Table-arXiv (Table-BRGM is similar to Table-arXiv).
The yellow curves show the distribution of confidence scores for each
model. Reliability diagrams [45] are histograms showing precision
as a function of confidence by intervals of width 0.1. As positive, we
consider the set of almost all predictions P* = P g5, and then com-
pute Py 5. For perfect calibration, the histogram should match the
identity function (the hatched histogram). Thus, the gap between
the colored and identity histograms denotes a model’s miscalibra-
tion (the lower, the better); D-ECE (Section 5.1.3) measures this.

On PubTables, TATR and VGT are well calibrated (low D-ECE).
Note that TATR outputs almost binary confidence score (accord-
ing to the confidence score distribution). There is no uncertainty
over this dataset, which is similar to its training set. XY-cut pre-
processing impacted the model performance: in the reliability dia-
grams, only highest confidence scores predictions should be con-
sidered as positive. On Table-arXiv, more heterogeneous, TATR-
detect-based models are poorly calibrated compared to VGT, and,
as for XY-cut, confidence scores become meaningless. For example,
among predictions with confidence scores between 80% and 90%,
on average, less than 2% are actual TP.

From these experiments, we draw the following lessons.
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Recall that there are two paradigms for TE models usage in down-
stream tasks. First, one can consider only positive predictions £,
which requires setting a confidence threshold. Second, we can con-
sider the whole set of detected tables P, with their attached confi-
dence scores. In the first case, TATR and XY models fit perfectly,
and the 0, choice is easy according to Figure 6. Docling also fits
this case, without choosing any threshold. In the second case, VGT
ensures interpretable and reliable confidence scores.

The threshold choice 6, impacts VGT and TATR differently. TATR
with XY achieves higher Precision for high .. XY+TATR-detect’s
Precision is lower than TATR-detect’s (for low thresholds) because
there are more predictions with XY-cut; without the 2-top post-
processing (recall Section 4.3), there would be even more.

7.3 Table structure recognition performance

Figure 7 plots TSR|p scores (recall Section 6.2) from content TD;
all scores are between 0.5 and 1. For each model, we use the color
assigned to it in Table 2. Each bar height averages the scores of
all TP predictions, with 6; = 0.5. Thus, scores cannot be directly
compared because the input dataset is different for each model (not
the same size and not the same images). For example, TATR, XY, and
VGT share the same TSR model (TATR-structure), and their average
TSR scores are similar but not equal, because the TD model impacts
the subsequent TSR model’s performance. GriTS Topology scores
tend to be higher in general than for Content and TEDS. Although
datasets contain various cells shapes, most are “simple”. Thus, if
a model correctly identifies the number of rows and columns, it
achieves a perfect structural score. However, for higher Content
and TEDS scores, token extraction must align with GT annotations.
But every tokenization method introduces biases, making it harder
to closely match the GT. For instance, PDFAlto does not retrieve
all text from PDFs, especially stylized text like equations, which
implies partial TCR for TATR-structure-based models.

7.4 Table extraction performance

Figures 8 and 9 illustrate Precision—Recall weighted by TSR scores
curves (see Section 5.3) from bbox TD. Dashed curves (- -) represent
scores for probabilistic models (with varying thresholds), while
baseline models are represented with inverted triangle dots (v). We

compute PTSR _ RTSR with )7 = 0.5, denoted as , Difference

areas with raw P-R curves are shown shaded in the model’s colors,
and with transparent dots for baseline models.

The scores decrease compared to vanilla Precision and Recall
(Figures 4 and 5), regardless of the TSR score used. GriTS Topology
scores are closer to vanilla P-R, which means that when a table
is detected (with Jaccard index 6; = 0.5), most of the time, the
table topology (rows, columns, spanning cells) is correctly found.
However, Precision and Recall with TEDS are lower, because they
take into account partial token match. We obtain similar results
using GriTS Content.

In Table 3 the “TE metrics” columns summarize AP metrics for
different TSR scores: Topology GriTS (denoted AP™P) and Content
GriTS (denoted APC™ | recall Section 5.2.2), as well as TEDS (de-
noted APTEPS introduced in Section 5.2.1). Table 4 does the same for
F-scores instead of AP. Though scores decreased for metrics with
TSR, the ranking remains the same across different methods. APTSR

and FTSR fall for all models, revising the initial positive assessment
of task TD (e.g. TATR and Docling on PubTables).

Further, we measured the CPU time used by inference on 1 000
samples, using 4 CPUs per task and 2 concurrent tasks. Camelot,
PyMuPDF, PDFPlumber and Grobid are 10 times faster (~ 1 s/image)
than LVLM (API calls), Docling, TATR, XY and VGT. Docling is
significantly slower than Grobid and other Python libraries due to
its use of computer vision models.

7.5 Experiment conclusions

The performance of the methods vary significantly depending on
dataset style, a dependency captured by our diverse benchmark
datasets. This variability arises from intrinsic design choices: ei-
ther raw hard-coded features (for heuristic-based methods) or pre-
training data (for probabilistic models). Docling achieves the best
overall performance across datasets for TD, followed by proba-
bilistic models. Meanwhile, other methods occasionally yield good
results on specific document layouts. TATR (TD-specialized model)
produces meaningless confidence scores, unlike VGT (DLA-specialized
model), which offers interpretable results.

For TSR, the global table topology is generally well-understood
in the detected tables, but TCR remains challenging in terms of
content accuracy.

We considered a specific input type: PDF reports. Nevertheless,
Grobid was the only model that leveraged the PDF format as in-
put; other models handle images, as they rely on image object
detection. Overall, while Docling (the most promising TD model)
demonstrates strong performance, it has yet to achieve perfect TE,
in terms of FTR,

8 CONCLUSION

We compared different methods for end-to-end table extraction
from scientific PDF documents. Our main conclusion is that table
extraction is not a solved problem (neither table detection nor
table structure recognition). Various DL approaches have improved
state-of-the-art results, however, there is no perfect solution. We
manage to achieve good performance on both subtasks with: TATR-
extract by modifying its pipeline; VGT+TATR-structure, to create
a new end-to-end and better-calibrated model that provides more
confidence in prediction; XY+TATR-extract, by adding additional
pre-processing to use sub-images as input. In addition, Docling also
performs well overall, thanks to its versatile pre-training, competing
with probabilistic approaches.

Dataset characteristics have significant impact on model per-
formance. Object detection-based models achieve the best overall
results on TE. On downstream tasks, the choice of 6, matters: either
we set a high threshold and expect to get positive predictions, or
we set low threshold and confidence scores and rely on confidence
scores as probabilities. As models based on TATR-detect are not
well-calibrated, possible future work includes using recalibration
techniques to obtain more interpretable scores.

Our new framework for TE allows better end-to-end evaluation,
encompassing TD and TSR, over a wide variety of model types on
new datasets (Table-arXiv and Table-BRGM) that provide novel
resources for advancing TE research and development.
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Table 3: Average Precision scores for TD and TE across datasets for probabilistic models.

PubTables Table-arXiv Table-BRGM
Method

TD TE metrics TD TE metrics TD TE metrics

AP APTop APCon APTEDS AP APTop APCon APTEDS AP APTop APCon APTEDS

TATR 1.00 0.91 0.80 0.80 0.84 0.73 0.56 0.52

0.84 0.77 0.69 0.66
XY 0.97 0.88 0.78 0.78 0.85 0.73 0.56 0.51 0.92 0.83 0.71 0.67
VGT 0.96 0.81 0.69 0.70 0.73 0.60 0.44 0.40 0.86 0.76 0.67 0.65
Table 4: F;-scores for TD and TE across datasets for baseline models.
PubTables Table-arXiv Table-BRGM
Method TD TE metrics TD TE metrics TD TE metrics
F1 Fqbp F?on FIEDS Fl ngp Ffon F?EDS Fl Fqbp Ffon F?EDS
Camelot 0.25 0.23 0.20 0.20 0.33 0.20 0.15 0.13 088 0.82 0.73 0.73

PyMuPDF 042 033 0.29 0.27 038 025 0.19 0.17 089 0.76  0.69 0.68
PDFPlumber 041 029 0.25 0.22 024 017 0.13 0.12 0.73  0.63 0.56 0.56
Grobid 0.67 059 0.1 0.47 043 039 031 0.28 0.16 0.11  0.09 0.07

099 095 086 086 089 083 0.72 0.67 090 0388 0.79 0.79
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